Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: Detection and applications

Publication date: July–September 2017 Source:Mutation Research/Reviews in Mutation Research, Volume 773 Author(s): Abdullah A. Gibriel, Ola Adel Genetic variants have been reported to cause several genetic diseases. Various genotyping assays have been developed for diagnostic and screening purposes but with certain limitations in sensitivity, specificity, cost effectiveness and/or time savings. Since the discovery of ligase chain reaction (LCR) in the late nineties, it became one of the most favored platforms for detecting these variants and also for genotyping low abundant contaminants. Recent and powerful modifications with the integration of various detection strategies such as electrochemical and magnetic biosensors, nanoparticles (NPs), quantum dots, quartz crystal and leaky surface acoustic surface biosensors, DNAzyme, rolling circle amplification (RCA), strand displacement amplification (SDA), surface enhanced raman scattering (SERS), chemiluminescence and fluorescence resonance energy transfer have been introduced to both LCR and ligation based amplifications to enable high-throughput and inexpensive multiplex genotyping with improved robustness, simplicity, sensitivity and specificity. In this article, classical and up to date modifications in LCR and ligation based amplifications are critically evaluated and compared with emphasis on points of strength and weakness, sensitivity, cost, running time, equipment needed, applications and multiplexing potential. Ver...
Source: Mutation Research Reviews in Mutation Research - Category: Genetics & Stem Cells Source Type: research