Ketone Body Infusion With 3-Hydroxybutyrate Reduces Myocardial Glucose Uptake and Increases Blood Flow in Humans: A Positron Emission Tomography Study [Molecular Cardiology]

BackgroundHigh levels of ketone bodies are associated with improved survival as observed with regular exercise, caloric restriction, and—most recently—treatment with sodium–glucose linked transporter 2 inhibitor antidiabetic drugs. In heart failure, indices of ketone body metabolism are upregulated, which may improve energy efficiency and increase blood flow in skeletal muscle and the kidneys. Nevertheless, it is uncertain how ketone bodies affect myocardial glucose uptake and blood flow in humans. Our study was therefore designed to test whether ketone body administration in humans reduces myocardial glucose uptake (MGU) and increases myocardial blood flow.Methods and ResultsEight healthy subjects, median aged 60 were randomly studied twice: (1) During 390 minutes infusion of Na‐3‐hydroxybutyrate (KETONE) or (2) during 390 minutes infusion of saline (SALINE), together with a concomitant low‐dose hyperinsulinemic–euglycemic clamp to inhibit endogenous ketogenesis. Myocardial blood flow was measured by 15O‐H2O positron emission tomography/computed tomography, myocardial fatty acid metabolism by 11C‐palmitate positron emission tomography/computed tomography and MGU by 18F‐fluorodeoxyglucose positron emission tomography/computed tomography. Similar euglycemia, hyperinsulinemia, and suppressed free fatty acids levels were recorded on both study days; Na‐3‐hydroxybutyrate infusion increased circulating Na‐3‐hydroxybutyrate levels from zero to 3.8±0.5...
Source: JAHA:Journal of the American Heart Association - Category: Cardiology Authors: Tags: Basic Science Research, Myocardial Biology, Nuclear Cardiology and PET Original Research Source Type: research