HAI ‐2 stabilizes, inhibits and regulates SEA‐cleavage‐dependent secretory transport of matriptase

In this study, we describe 3 mutations in the binding loop of the HAI‐2 Kunitz domain 1 (K42N, C47F and R48L) that cause a delay in the SEA domain cleavage of matriptase, leading to accumulation of non‐SEA domain cleaved matriptase in the endoplasmic reticulum (ER). We suggest that, like other known SEA domains, the matriptase SEA domain auto‐cleaves and reflects that correct oligomerization, maturation, and/or folding has been obtained. Our results suggest that the HAI‐2 Kunitz domain 1 mutants influence the flux of matriptase to the plasma membrane by affecting the oligomerization, maturation and/or folding of matriptase, and as a result the SEA domain cleavage of matriptase. Two of the HAI‐2 Kunitz domain 1 mutants investigated (C47F, R48L and C47F/R48L) also displayed a reduced ability to proteolytically silence matriptase. Hence, HAI‐2 separately stabilizes matriptase, regulates the secretory transport, possibly via maturation/oligomerization and inhibits the proteolytic activity of matriptase in the ER, and possible throughout the secretory pathway. We describe 3 mutations in the binding loop of the hepatocyte growth factor activator inhibitor‐2 (HAI‐2) Kunitz domain 1 (K42N, C47F and R48L) that cause a delay in the SEA domain cleavage of matriptase, leading to accumulation of non‐SEA domain cleaved matriptase in the endoplasmic reticulum. Two of the HAI‐2 Kunitz domain 1 mutants investigated, C47F and R48L, also displayed a reduced ability to prot...
Source: Traffic - Category: Research Authors: Tags: ORIGINAL ARTICLE Source Type: research