Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells

In this study, we present evidence that Mcl-1 participates directly in determining effective therapeutic responses in colon cancer cells. In this setting, Mcl-1 degradation was induced by a variety of multikinase inhibitor drugs, where it relied upon GSK3β phosphorylation and FBW7-dependent ubiquitination. Specific blockade by genetic knock-in (KI) abolished apoptotic responses and conferred resistance to kinase inhibitors. Mcl-1-KI also suppressed the antiangiogenic and anti-hypoxic effects of kinase inhibitors in the tumor microenvironment. Interestingly, these same inhibitors also induced the BH3-only Bcl-2 family protein PUMA, which is required for apoptosis. Degradation-resistant Mcl-1 bound and sequestered PUMA from other prosurvival proteins to maintain cell survival, which was abolished by small-molecule Mcl-1 inhibitors. Our findings establish a pivotal role for Mcl-1 degradation in the response of colon cancer cells to targeted therapeutics, and they provide a useful rational platform to develop Mcl-1–targeting agents that can overcome drug resistance. Cancer Res; 77(9); 2512–21. ©2017 AACR.
Source: Cancer Research - Category: Cancer & Oncology Authors: Tags: Therapeutics, Targets, and Chemical Biology Source Type: research