Sigma1 Targeting to Suppress Aberrant Androgen Receptor Signaling in Prostate Cancer

We reported previously that some Sigma1-selective small molecules can be used to pharmacologically modulate protein homeostasis pathways. We hypothesized that these Sigma1-mediated responses could be exploited to suppress AR protein levels and activity. Here we demonstrate that treatment with a small-molecule Sigma1 inhibitor prevented 5α- dihydrotestosterone-mediated nuclear translocation of AR and induced proteasomal degradation of AR and ARV, suppressing the transcriptional activity and protein levels of both full-length and splice-variant AR. Consistent with these data, RNAi knockdown of Sigma1 resulted in decreased AR levels and transcriptional activity. Furthermore, Sigma1 physically associated with ARV7 and ARv567es as well as full-length AR. Treatment of mice xenografted with ARV-driven CRPC tumors with a drug-like small-molecule Sigma1 inhibitor significantly inhibited tumor growth associated with elimination of AR and ARV7 in responsive tumors. Together, our data show that Sigma1 modulators can be used to suppress AR/ARV–driven prostate cancer cells via regulation of pharmacologically responsive Sigma1-AR/ARV interactions, both in vitro and in vivo. Cancer Res; 77(9); 2439–52. ©2017 AACR.
Source: Cancer Research - Category: Cancer & Oncology Authors: Tags: Therapeutics, Targets, and Chemical Biology Source Type: research