Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma.

Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma. Exp Mol Med. 2014;46:e97 Authors: Xu H, Choe C, Shin SH, Park SW, Kim HS, Jung SH, Yim SH, Kim TM, Chung YJ Abstract Although it has been suggested that kinesin family member 14 (KIF14) has oncogenic potential in various cancers, including hepatocellular carcinoma (HCC), the molecular mechanism of this potential remains unknown. We aimed to elucidate the role of KIF14 in hepatocarcinogenesis by knocking down KIF14 in HCC cells that overexpressed KIF14. After KIF14 knockdown, changes in tumor cell growth, cell cycle and cytokinesis were examined. We also examined cell cycle regulatory molecules and upstream Skp1/Cul1/F-box (SCF) complex molecules. Knockdown of KIF14 resulted in suppression of cell proliferation and failure of cytokinesis, whereas KIF14 overexpression increased cell proliferation. In KIF14-silenced cells, the levels of cyclins E1, D1 and B1 were profoundly decreased compared with control cells. Of the cyclin-dependent kinase inhibitors, the p27(Kip1) protein level specifically increased after KIF14 knockdown. The increase in p27(Kip1) was not due to elevation of its mRNA level, but was due to inhibition of the proteasome-dependent degradation pathway. To explore the pathway upstream of this event, we measured the levels of SCF complex molecules, including Skp1, Skp2, Cu...
Source: exp Mol Med - Category: Molecular Biology Authors: Tags: Exp Mol Med Source Type: research