Specificity of tyrosinase-catalyzed synthesis of theaflavins

This study kinetically characterized the mechanism of the enzymatic synthesis of theaflavins (TFs) from catechins by mushroom tyrosinase (EC 1.14.18.1). In reactions containing one of four catechins, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), and their galloylated forms (ECg and EGCg), they were oxidized by tyrosinase with apparent K M values of 3.78mM, 5.55mM, 0.80mM, and 3.05mM, respectively, and with different consumption rates, of which EC was more than four-times higher than those of the others. In reactions with binary combinations of catechins with tyrosinase, the synthesis of TF1 from EC and EGC occurred most efficiently, while the yields of mono- and di-galloylated TFs, TF2A, TF2B, and TF3, were low. Time-dependent changes in concentrations of the reactants suggested that the enzymatic oxidation of catechins and the subsequent non-enzymatic coupling redox reaction between the quinone derived from EC or ECg and the intact pyrogallol-type catechin (EGC or EGCg) proceeded concurrently. The latter reaction induced the rapid decrease of EGC and EGCg and it was remarkable for EGCg. So the efficiency of condensation of a pair of quinones from catechol- and pyrogallol-type catechins is restricted, critically influencing the yield of TFs. Using green tea extracts as mixtures of the four substrate catechins, tyrosinase produced TF1 most abundantly. Furthermore, a remarkable enhancement of production of TF2A and TF2B as well as TF1 was observed, when the initial concentr...
Source: Journal of Molecular Catalysis B: Enzymatic - Category: Biochemistry Source Type: research
More News: Biochemistry | Study