S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers

Nitric oxide is generated in skeletal muscle with activity and decreases Ca2+ sensitivity of the contractile apparatus, putatively by S-nitrosylation of an unidentified protein. We investigated the mechanistic basis of this effect and its relationship to the oxidation-induced increase in Ca2+ sensitivity in mammalian fast-twitch (FT) fibers mediated by S-glutathionylation of Cys134 on fast troponin I (TnIf). Force-[Ca2+] characteristics of the contractile apparatus in mechanically skinned fibers were assessed by direct activation with heavily Ca2+-buffered solutions. Treatment with S-nitrosylating agents, S-nitrosoglutathione (GSNO) or S-nitroso-N-acetyl-penicillamine (SNAP), decreased pCa50 ( = –log10 [Ca2+] at half-maximal activation) by ~–0.07 pCa units in rat and human FT fibers without affecting maximum force, but had no effect on rat and human slow-twitch fibers or toad or chicken FT fibers, which all lack Cys134. The Ca2+ sensitivity decrease was 1) fully reversed with dithiothreitol or reduced glutathione, 2) at least partially reversed with ascorbate, indicative of involvement of S-nitrosylation, and 3) irreversibly blocked by low concentration of the alkylating agent, N-ethylmaleimide (NEM). The biotin-switch assay showed that both GSNO and SNAP treatments caused S-nitrosylation of TnIf. S-glutathionylation pretreatment blocked the effects of S-nitrosylation on Ca2+ sensitivity, and vice-versa. S-nitrosylation pretreatment prevented NEM from irreversibly...
Source: AJP: Cell Physiology - Category: Cytology Authors: Tags: RESEARCH ARTICLE Source Type: research
More News: Cytology | Physiology