Genome-centric evaluation of Burkholderia sp. strain SRS-W-2-2016 resistant to high concentrations of uranium and nickel isolated from the Savannah River Site (SRS), USA

Publication date: Available online 27 February 2017 Source:Genomics Data Author(s): Ashish Pathak, Ashvini Chauhan, Paul Stothard, Stefan Green, Mark Maienschein-Cline, Rajneesh Jaswal, John Seaman Savannah River Site (SRS), an approximately 800-km2 former nuclear weapons production facility located near Aiken, SC remains co-contaminated by heavy metals and radionuclides. To gain a better understanding on microbially-mediated bioremediation mechanisms, several bacterial strains resistance to high concentrations of Uranium (U) and Nickel (Ni) were isolated from the Steeds Pond soils located within the SRS site. One of the isolated strains, designated as strain SRS-W-2-2016, grew robustly on both U and Ni. To fully understand the arsenal of metabolic functions possessed by this strain, a draft whole genome sequence (WGS) was obtained, assembled, annotated and analyzed. Genome-centric evaluation revealed the isolate to belong to the Burkholderia genus with close affiliation to B. xenovorans LB400, an aggressive polychlorinated biphenyl-degrader. At a coverage of 90×, the genome of strain SRS-W-2-2016 consisted of 8,035,584 bases with a total number of 7071 putative genes assembling into 191 contigs with an N50 contig length of 134,675 bases. Several gene homologues coding for resistance to heavy metals/radionuclides were identified in strain SRS-W-2-2016, such as a suite of outer membrane efflux pump proteins similar to nickel/cobalt transporter regulators, peptide/nic...
Source: Genomics Data - Category: Genetics & Stem Cells Source Type: research
More News: Burkholderia | Genetics