Globular and Optically Transparent Photonic Crystals Based on 3D-opal Matrix and REE

Publication date: 2017 Source:Physics Procedia, Volume 86 Author(s): S.N. Ivicheva, Yu.F. Kargin, V.S. Gorelik By repeatedly filling the octahedral and tetrahedral pores of 3D-silica opal matrices with silica sol doped with rare-earth elements with subsequent heat treatment globular photonic crystals filled with mesoporous glass and optically transparent photonic crystals (quantytes) containing 10-30ppm REE were produced, depending on the annealing temperature. Voids of fcc lattice formed by amorphous spherical globules of SiO2 in globular photonic crystals are filled (up to 70%) by mesoporous glass doped with rare earth elements. Pores in the transparent photonic crystals disappear during sintering of globules of silica and mesoporous glass, but the periodic arrangement of REE-enriched silica areas (quantum dots) is retained. The reflection and luminescence spectra of photonic crystals filled with sols doped with europium Eu3+ and terbium Tb3+ were experimentally studied. A significant increase in the photoluminescence intensity of Eu3+ ions at the approach of the spectral position of the transition 5D0 → 7F2 to the edge of the bandgaps of the photonic crystal was determined. The authors come to the conclusion that a lowering of the threshold for lasing transitions in ions of rare elements is possible.
Source: Physics Procedia - Category: Physics Source Type: research
More News: Physics