Modulation of Modeled Microgravity on Radiation-Induced Adaptive Response of Root Growth in Arabidopsis thaliana

Publication date: Available online 14 February 2017 Source:Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis Author(s): Chenguang Deng, Ting Wang, Jingjing Wu, Wei Xu, Huasheng Li, Min Liu, Lijun Wu, Jinying Lu, Po Bian Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, to our knowledge, there is no evidence yet as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. Consistently, priming irradiation-induced expressions of DNA repair genes (AtK...
Source: Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis - Category: Cytology Source Type: research