Zinc Cluster Transcription Factors Alter Virulence in Candida albicans [Gene Expression]

Almost all humans are colonized with Candida albicans. However, in immunocompromised individuals, this benign commensal organism becomes a serious, life-threatening pathogen. Here, we describe and analyze the regulatory networks that modulate innate responses in the host niches. We identified Zcf15 and Zcf29, two Zinc Cluster transcription Factors (ZCF) that are required for C. albicans virulence. Previous sequence analysis of clinical C. albicans isolates from immunocompromised patients indicates that both ZCF genes diverged during clonal evolution. Using in vivo animal models, ex vivo cell culture methods, and in vitro sensitivity assays, we demonstrate that knockout mutants of both ZCF15 and ZCF29 are hypersensitive to reactive oxygen species (ROS), suggesting they help neutralize the host-derived ROS produced by phagocytes, as well as establish a sustained infection in vivo. Transcriptomic analysis of mutants under resting conditions where cells were not experiencing oxidative stress revealed a large network that control macro and micronutrient homeostasis, which likely contributes to overall pathogen fitness in host niches. Under oxidative stress, both transcription factors regulate a separate set of genes involved in detoxification of ROS and down-regulating ribosome biogenesis. ChIP-seq analysis, which reveals vastly different binding partners for each transcription factor (TF) before and after oxidative stress, further confirms these results. Furthermore, the absence ...
Source: Genetics - Category: Genetics & Stem Cells Authors: Tags: Gene Expression Source Type: research
More News: Candida | Genetics