The Lack of Mutagenic Potential of a Guanine-Rich Triplex Forming Oligonucleotide in Physiological Conditions

Triplex forming oligonucleotides (TFOs) bind in the major groove of DNA duplex in a sequence-specific manner imparted by Hoogsteen hydrogen bonds. There have been several reports demonstrating the ability of guanine-rich TFOs to induce targeted mutagenesis on an exogenous plasmid or an endogenous chromosomal locus. In particular, a 30mer guanine-rich triplex forming oligonucleotide, AG30, optimally designed to target the supFG1 reporter gene was reported to be mutagenic in the absence of DNA reactive agents in cultured cells and in vivo. Here, we investigated the mutagenic potential of AG30 using the supFG1 shuttle vector forward mutation assay under physiological conditions. We also assessed the triplex binding potential of AG30 alongside cytotoxic and mutagenic assessment. In a cell free condition, AG30 was able to bind its polypurine target site in the supFG1 gene in the absence of potassium chloride and also aligned with a 5-fold increase in the mutant frequency when AG30 was pre-incubated with the supFG1 plasmid in the absence of potassium prior to transfection into COS-7 cells. However, when we analyzed triplex formation of AG30 and the supFG1 target duplex at physiological potassium levels, triplex formation was inhibited due to the formation of competing secondary structures. Subsequent assessment of mutant frequency under physiological conditions, by pre-transfecting COS-7 cells with the supFG1 plasmid prior to AG30 treatment led to a very small increase (1.4-fold) i...
Source: Toxicological Sciences - Category: Toxicology Authors: Tags: Guanine-Rich Triplix Forming Oligonucleotide is not Mutagenic Source Type: research