Inflammation and lung injury in an ovine model of extracorporeal membrane oxygenation support

Extracorporeal membrane oxygenation (ECMO) is a life-saving treatment for patients with severe refractory cardiorespiratory failure. Exposure to the ECMO circuit is thought to trigger/exacerbate inflammation. Determining whether inflammation is the result of the patients' underlying pathologies or the ECMO circuit is difficult. To discern how different insults contribute to the inflammatory response, we developed an ovine model of lung injury and ECMO to investigate the impact of smoke-induced lung injury and ECMO in isolation and cumulatively on pulmonary and circulating inflammatory cells, cytokines, and tissue remodeling. Sheep receiving either smoke-induced acute lung injury (S-ALI) or sham injury were placed on veno-venous (VV) ECMO lasting either 2 or 24 h, with controls receiving conventional ventilation only. Lung tissue, bronchoalveolar fluid, and plasma were analyzed by RT-PCR, immunohistochemical staining, and zymography to assess inflammatory cells, cytokines, and matrix metalloproteinases. Pulmonary compliance decreased in sheep with S-ALI placed on ECMO with increased numbers of infiltrating neutrophils, monocytes, and alveolar macrophages compared with controls. Infiltration of neutrophils was also observed with S-ALI alone. RT-PCR studies showed higher expression of matrix metalloproteinases 2 and 9 in S-ALI plus ECMO, whereas IL-6 was elevated at 2 h. Zymography revealed higher levels of matrix metalloproteinase 2. Circulating plasma levels of IL-6 were eleva...
Source: AJP: Lung Cellular and Molecular Physiology - Category: Respiratory Medicine Authors: Tags: CALL FOR PAPERS Source Type: research
More News: Cardiology | Heart | Physiology | Study