Disruption of the astrocytic TNFR1-GDNF axis accelerates motor neuron degeneration and disease progression in amyotrophic lateral sclerosis

In this study, we identified TNF receptor 1 (TNFR1) signalling as a major promoter of GDNF synthesis/release from human and mouse spinal cord astrocytes in vitro and in vivo. To determine whether endogenously produced TNFα can also trigger the synthesis of GDNF in the nervous system, we then focused on SOD1G93A ALS transgenic mice, whose affected tissues spontaneously exhibit high levels of TNFα and its receptor 1 at the onset and symptomatic stage of the disease. In SOD1G93A spinal cords, we verified a strict correlation in the expression of the TNFα, TNFR1 and GDNF triad at different stages of disease progression. Yet, ablation of TNFR1 completely abolished GDNF rises in both SOD1G93A astrocytes and spinal cords, a condition that accelerated motor neuron degeneration and disease progression. Our data suggest that the astrocytic TNFR1-GDNF axis represents a novel target for therapeutic intervention in ALS.
Source: Human Molecular Genetics - Category: Genetics & Stem Cells Authors: Tags: ARTICLES Source Type: research