Metabolism of sn -1(3)-Monoacylglycerol and sn -2-Monoacylglycerol in Caecal Enterocytes and Hepatocytes of Brown Trout ( Salmo trutta )

Abstractsn-2-Monoacylglycerol (2-MAG) andsn-1(3)-monoacylglycerol [1(3)-MAG] are important but yet little studied intermediates in lipid metabolism. The current study compared the metabolic fate of 2-MAG and 1(3)-MAG in isolated caecal enterocytes and hepatocytes of brown trout (Salmo trutta). 1(3)-Oleoyl [9,10-3H(N)]-glycerol and 2-Oleoyl [9,10-3H(N)]-glycerol were prepared by pancreatic lipase digestion of triolein [9,10-3H(N)]. The 1(3)-MAG and 2-MAG were efficiently absorbed by enterocytes and hepatocytes at similar rates. The 2-MAG was quickly resynthesized into TAG through the monoacylglycerol acyltransferase (EC: 2.3.1.22, MGAT) pathway in both tissues, whereas 1(3)-MAG was processed into TAG and phospholipids at a much slower rate, suggesting 2-MAG was the preferred substrates for MGAT. Further analysis showed that 1(3)-MAG was synthesized into 1,3-DAG, but there were no accumulation of 1,3-DAG in either enterocytes or hepatocytes, which contrasts that of mammalian studies. Some of the 1(3)-MAG may be acylated to 1,2(2,3)-DAG and then utilized for TAG synthesis. Alternatively, 1(3)-MAG can be hydrolyzed to free fatty acid and glycerol, and re-synthesized into TAG through the glycerol-3-phosphate (Gro-3-P) pathway. The overall data suggested that the limiting step of the intracellular 1(3)-MAG metabolism is the conversion of 1(3)-MAG itself.
Source: Lipids - Category: Lipidology Source Type: research
More News: Lipidology | Pancreas | Study