miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats

In rats with type 1 diabetes (T1DM), the therapeutic effects and underlying mechanisms of action of stroke treatment were compared between bone-marrow stromal cells (BMSCs) derived from T1DM rats (DM-BMSCs) and BMSCs derived from normal rats (Nor-BMSCs). The novel role of microRNA-145 (miR-145) in mediating DM-BMSC treatment-induced benefits was also investigated. T1DM rats (n = 8 per group) underwent 2 hours of middle cerebral artery occlusion (MCAo) and were treated 24 hours later with the one of the following (5 x 106 cells administered i.v.): (a) phosphate-buffered saline (PBS); (b) Nor-BMSCs; (c) DM-BMSCs; (d) DM-BMSCs with miR-145 overexpression (miR-145+/+DM-BMSCs); or (e) Nor-BMSCs with miR-145 knockdown. Evaluation of functional outcome, vascular and white-matter remodeling and microRNA expression was made, and in vitro studies were performed. In vitro, DM-BMSCs exhibited decreased miR-145 expression and increased survival compared with Nor-BMSCs. Capillary tube formation and axonal outgrowth in cultured primary cortical neurons were significantly increased by DM-BMSC-conditioned medium compared with Nor-BMSCs, and significantly decreased by miR-145+/+DM-BMSC-conditioned medium compared with DM-BMSCs. In T1DM rats in which stroke had been induced (T1DM stroke rats), DM-BMSC treatment significantly improved functional outcome, increased vascular and white matter remodeling, decreased serum miR-145 expression, and increased expression of the miR-145 target genes adenos...
Source: Stem Cells Translational Medicine - Category: Stem Cells Authors: Tags: Mesenchymal Stem Cells, Cell-Based Drug Development, Screening, and Toxicology Source Type: research