Efficient Library Preparation for Next-Generation Sequencing Analysis of Genome-Wide Epigenetic and Transcriptional Landscapes in Embryonic Stem Cells

Gene expression in embryonic stem (ES) cells is regulated in part by a network of transcription factors, epigenetic regulators, and histone modifications that influence the underlying chromatin in a way that is conducive or repressive for transcription. Advances in next-generation sequencing technology have allowed for the genome-wide analysis of chromatin constituents and protein–DNA interactions at high resolution in ES cells and other stem cells. While many studies have surveyed genome-wide profiles of a few factors and expression changes at a fixed time point in undifferentiated ES cells, few have utilized an integrative approach to simultaneously survey protein–DNA interactions, histone modifications, and expression programs during ES cell self-renewal and differentiation. To identify transcriptional networks that regulate pluripotency and differentiation, it is important to generate high-quality genome-wide maps of transcription factors, chromatin factors, and histone modifications and to survey global gene expression profiles. Here, to interrogate genome-wide profiles of chromatin features and to survey global gene expression programs in ES cells, we describe protocols for efficient library construction for next-generation sequencing of ChIP-Seq and RNA-Seq samples.
Source: Springer protocols feed by Cell Biology - Category: Cytology Source Type: news