Exploring the unexpected influence of the Si:Ge ratio on the molecular architecture and mechanical properties of Al-free GICs

Germanium (Ge)-based glass ionomer cements have demonstrated the ability to balance strength with extended setting times, a unique set of characteristics for aluminum-free glass ionomer cements. However, the mechanical properties of current Ge-based glass ionomer cements significantly deteriorate over time, which jeopardizes their clinical potential. This work explores the effect of incrementally decreasing the Si:Ge ratio in the glass phase of zinc-silicate glass ionomer cements to identify potential mechanisms responsible for the time-induced mechanical instability of Ge-based glass ionomer cements. The influence of Ge was evaluated on the basis of changes in mechanical properties and molecular architecture of the cements over a 180-day period. It was observed that the compressive strength and modulus of the cements were sustained when Si:Ge ratios were ≥1:1, but when Si:Ge ratios are <1:1 these properties decreased significantly over time. These mechanical changes were independent of structural changes in the glass ionomer cement matrices, as the level of metal–carboxylate crosslinks remained constant over time across the various Si:Ge ratios explored. However, it was noted the temporal decline of mechanical properties was proportional to the increased release of degradation byproducts, in particular Ge that was released from the cements in substantially greater quantities than other glass constituents. Unexpectedly, the slowest setting cement (Si:Ge 1:1) was a...
Source: Journal of Biomaterials Applications - Category: Materials Science Authors: Tags: Biomaterials Processing Source Type: research