Biomechanical effects of angular stable locking in intramedullary nails for the fixation of distal tibia fractures

This study tested the hypothesis that intramedullary nails with angular stable interlocking screws would have increased construct stiffness, reduced fracture gap movement and enhanced fatigue failure compared to nails with conventional locking having the same diameter. Biomechanical experiments were performed on 24 human cadaveric tibiae which obtained a distal fracture and were fixed by three different techniques: conventional locking with 8- and 10-mm-diameter nails and angular stable locking with 8-mm nails. Stiffness of the implant–bone construct and movement of the fragments were tested under axial loading and torsion. The constructs were tested to failure under cyclic fatigue loading. Analysis of variance and Kaplan–Meier survival analysis were used for statistical assessment. Axial stiffness of the 10-mm nail was about 50% larger compared to both 8-mm nail constructs independent of the type of locking mode (p < 0.01). No differences were found in axial performance between angular stable and conventional locking neither under static nor under cyclic testing conditions (p > 0.5). Angular stability significantly decreased the clearance under torsional load by more than 50% compared to both conventionally locked constructs (p = 0.03). However, due to the larger nail diameter, the total interfragmentary motion was still smallest for the 10-mm nail construct (p < 0.01). Although the 10-mm nail constructs survived slightly longer, differences between grou...
Source: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine - Category: Biomedical Engineering Authors: Tags: Original Articles Source Type: research