Hydroxyapatite microporous bioceramics as vancomycin reservoir: Antibacterial efficiency and biocompatibility investigation

Abstarct Infections after bone reconstructive surgery are a real therapeutic and economic issue for the modern health care system. As the pathogen (most often Staphylococcus aureus) is able to develop a biofilm inside the bone, local delivery of antibiotics is of interest since high drug concentrations would be delivered directly at the target place. In this context, this study evaluated a porous hydroxyapatite implant as biocompatible bone substitute and vancomycin-delivery system to prevent post-operative infections. A simple method of impregnation with optimised conditions insured a high antibiotic loading (up to 2.3 ± 0.3 mg/m2), with a complete in vitro release obtained within 1–5 days. Additionally, the bacteriostatic and bactericidal effects of vancomycin were retained after loading on hydroxyapatite, as demonstrated after challenge with a Staphylococcus aureus strain. Regarding the biocompatibility, a wound healing assay of pre-osteoblastic MC3T3-E1 cells exposed to various concentrations of vancomycin revealed a dose-dependent reduction in cell migration for antibiotic concentrations higher than 1 mg/mL. Meanwhile, cells were able to proliferate normally on vancomycin-loaded scaffolds, although cell initial adhesion was seriously impaired for scaffolds loaded with 2.3 mg/m2. Loaded scaffolds could be stored up to three months at room temperature without any degradation of the antibiotic. Together, these results demonstrate the efficacy of these hydr...
Source: Journal of Biomaterials Applications - Category: Materials Science Authors: Tags: Hard Tissues and Materials Source Type: research