Assessment of DNA damage as an index of genetic toxicity in welding microenvironments among iron-based industries

Welding is used extensively in different industries. Welders are always at a risk of exposure to a number of gases and metal-containing fumes in their respective microenvironments in which they work. Welding fumes consist of a wide range of complex metal oxide particles which can deposit in different parts of their bodies causing serious health problems. In the present study, 35 welders (age: 33.80 ± 1.04 years) from two iron-based industries have been assessed for DNA damage in peripheral blood lymphocytes using single-cell gel electrophoresis. An equal number of subjects (N = 35; age: 30.40 ± 1.51 years) matched to exposed subjects with respect to sex, age, socioeconomic status, smoking, and alcoholic habits were taken as controls. The results revealed that the damaged cell frequency (DCF) and mean comet tail length (CTL) in welders were significantly higher as compared to the controls (DCF: 69.74 ± 1.68 vs. 31.14 ± 1.67 and CTL: 29.21 ± 1.48 vs. 1.47 ± 0.08; p < 0.05). The effect of confounding factors such as age, duration of exposure, smoking, and drinking habits was also studied. Blood lead levels also showed a positive correlation with duration of exposure and CTL, and the overall results indicated an increased genetic damage as an index of genotoxicity in workers occupationally engaged in welding microenvironments.
Source: Toxicology and Industrial Health - Category: Toxicology Authors: Tags: Articles Source Type: research