Inhibition of microRNA-34a prevents IL-1{beta}-induced extracellular matrix degradation in nucleus pulposus by increasing GDF5 expression

In this study, microRNA-34a expression was assessed in nucleus pulposus specimens and in IL-1β-stimulated nucleus pulposus cells by real-time polymerase chain reaction. microRNA-34a functions were investigated by using gain and loss of function experiments in nucleus pulposus cells and a dual luciferase reporter assay in 293T cells. microRNA-34a was dramatically up-regulated in degenerative nucleus pulposus tissues and in IL-1β-stimulated nucleus pulposus cells when compared with controls. Furthermore, growth differentiation factor 5 was identified as a target of microRNA-34a. Aberrant expression of microRNA-34a inhibited growth differentiation factor 5 expression by direct binding to its 3'-untranslated region. This inhibition was abolished by mutation of the microRNA-34a binding sites. In addition, microRNA-34a silencing reversed IL-1β-induced decrease in type II collagen and aggrecan expression in nucleus pulposus cells. This effect was substantially suppressed by growth differentiation factor 5 silencing. Our results suggested that microRNA-34a inhibition prevents IL-1β-induced extracellular matrix degradation in human nucleus pulposus by increasing growth differentiation factor 5 expression. microRNA-34a inhibition may be a novel molecular target for intervertebral disc degeneration treatment through the prevention of nucleus pulposus extracellular matrix degradation.
Source: Experimental Biology and Medicine - Category: Research Authors: Tags: Biochemistry & amp;amp; Molecular Biology Source Type: research