Insulin-like growth factor (IGF) axis in cancerogenesis

Publication date: Available online 4 September 2016 Source:Mutation Research/Reviews in Mutation Research Author(s): Aldona Kasprzak, Wojciech Kwasniewski, Agnieszka Adamek, Anna Gozdzicka-Jozefiak Determination of the role of insulin-like growth factor (IGF) family components in carcinogenesis of several human tumors is based on numerous epidemiological and pre-clinical studies, experiments in vivo and in vitro and on attempts at application of drugs affecting the IGF axis. Investigative hypotheses in original studies were based on biological functions manifested by the entire family of IGF (ligands, receptors, linking proteins, adaptor molecules). In the context of carcinogenesis the most important functions of IGF family involve intensification of proliferation and inhibition of cell apoptosis and effect on cell transformation through synthesis of several regulatory proteins. IGF axis controls survival and influences on metastases of cells. Interactions of IGF axis components may be of a direct or indirect nature. The direct effects are linked to activation of PI3K/Akt signaling pathway, in which the initiating role is first of all played by IGF-1 and IGF-1R. Activity of this signaling pathway leads to an increased mitogenesis, cell cycle progression, and protection against different apoptotic stresses. Indirect effects of the axis depend on interactions between IGF and other molecules important for cancer etiology (e.g. sex hormones, products of suppressor genes, vi...
Source: Mutation Research Reviews in Mutation Research - Category: Genetics & Stem Cells Source Type: research