Potential of mannan or dextrin nanogels as vaccine carrier/adjuvant systems

Polymeric nanogels have been sophisticatedly designed promising a new generation of vaccine delivery/adjuvant systems capable of boosting immune response, a strategic priority in vaccine design. Here, nanogels made of mannan or dextrin were evaluated for their potential as carriers/adjuvants in vaccine formulations. Since lymph nodes are preferential target organs for vaccine delivery systems, nanogels were biotin-labeled, injected in the footpad of rats, and their presence in draining lymph nodes was assessed by immunofluorescence. Nanogels were detected in the popliteal and inguinal lymph nodes by 24 h upon subcutaneous administration, indicating entrapment in lymphatic organs. Moreover, the model antigen ovalbumin was physically encapsulated within nanogels and physicochemically characterized concerning size, zeta potential, ovalbumin loading, and entrapment efficiency. The immunogenicity of these formulations was assessed in mice intradermally immunized with ovalbumin–mannan or ovalbumin–dextrin by determining ovalbumin-specific antibody serum titers. Intradermal vaccination using ovalbumin–mannan elicited a humoral immune response in which ovalbumin-specific IgG1 levels were significantly higher than those obtained with ovalbumin alone, indicating a TH2-type response. In contrast, dextrin nanogel did not show adjuvant potential. Altogether, these results indicate that mannan nanogel is a material that should be explored as a future antigen delivery syst...
Source: Journal of Bioactive and Compatible Polymers - Category: Research Authors: Tags: Original Articles Source Type: research