A generalized analytic solution to the win ratio to analyze a composite endpoint considering the clinical importance order among components

A composite endpoint consists of multiple endpoints combined in one outcome. It is frequently used as the primary endpoint in randomized clinical trials. There are two main disadvantages associated with the use of composite endpoints: a) in conventional analyses, all components are treated equally important; and b) in time‐to‐event analyses, the first event considered may not be the most important component. Recently Pocock et al. (2012) introduced the win ratio method to address these disadvantages. This method has two alternative approaches: the matched pair approach and the unmatched pair approach. In the unmatched pair approach, the confidence interval is constructed based on bootstrap resampling, and the hypothesis testing is based on the non‐parametric method by Finkelstein and Schoenfeld (1999). Luo et al. (2015) developed a close‐form variance estimator of the win ratio for the unmatched pair approach, based on a composite endpoint with two components and a specific algorithm determining winners, losers and ties. We extend the unmatched pair approach to provide a generalized analytical solution to both hypothesis testing and confidence interval construction for the win ratio, based on its logarithmic asymptotic distribution. This asymptotic distribution is derived via U‐statistics following Wei and Johnson (1985). We perform simulations assessing the confidence intervals constructed based on our approach versus those per the bootstrap resampling and per Luo ...
Source: Pharmaceutical Statistics - Category: Statistics Authors: Tags: Main Paper Source Type: research