Guanine-Tethered Antisense Oligonucleotides as Synthetic Riboregulators

Regulation of gene expression by short oligonucleotides (antisense oligonucleotides), which can modulate RNA structures and inhibit subsequent associations with the translation machinery, is a potential approach for gene therapy. This chapter describes an alternative antisense strategy using guanine-tethered antisense oligonucleotides (G-ASs) to introduce a DNA–RNA heteroquadruplex structure at a designated sequence on RNA targets. The feasibility of using G-ASs to modulate RNA conformation may allow control of RNA function by inducing biologically important quadruplex structures. This approach to manipulate quadruplex structures using G-ASs may expand the strategies for regulating RNA structures and the functions of short oligonucleotide riboregulators.
Source: Springer protocols feed by Biochemistry - Category: Biochemistry Source Type: news