Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Endothelial Network Formation

Vascular smooth muscle cells (SMCs) from distinct anatomic locations derive from different embryonic origins. Here we investigated the respective potential of different embryonic origin-specific SMCs derived from human embryonic stem cells (hESCs) to support endothelial network formation in vitro. SMCs of three distinct embryological origins were derived from an mStrawberry-expressing hESC line and were cocultured with green fluorescent protein-expressing human umbilical vein endothelial cells (HUVECs) to investigate the effects of distinct SMC subtypes on endothelial network formation. Quantitative analysis demonstrated that lateral mesoderm (LM)-derived SMCs best supported HUVEC network complexity and survival in three-dimensional coculture in Matrigel. The effects of the LM-derived SMCs on HUVECs were at least in part paracrine in nature. A TaqMan array was performed to identify the possible mediators responsible for the differential effects of the SMC lineages, and a microarray was used to determine lineage-specific angiogenesis gene signatures. Midkine (MDK) was identified as one important mediator for the enhanced vasculogenic potency of LM-derived SMCs. The functional effects of MDK on endothelial network formation were then determined by small interfering RNA-mediated knockdown in SMCs, which resulted in impaired network complexity and survival of LM-derived SMC cocultures. The present study is the first to show that SMCs from distinct embryonic origins differ in thei...
Source: Stem Cells Translational Medicine - Category: Stem Cells Authors: Tags: Tissue Engineering and Regenerative Medicine, Muscle Stem Cells Source Type: research