Mutations of myelodysplastic syndromes (MDS): An update

Publication date: Available online 23 June 2016 Source:Mutation Research/Reviews in Mutation Research Author(s): Bani Bandana Ganguly, N.N. Kadam The plethora of knowledge gained on myelodysplastic syndromes (MDS), a heterogeneous pre-malignant disorder of hematopoietic stem cells, through sequencing of several pathway genes has unveiled molecular pathogenesis and its progression to AML. Evolution of phenotypic classification and risk-stratification based on peripheral cytopenias and blast count has moved to five-tier risk-groups solely concerning chromosomal aberrations. Increased frequency of complex abnormalities, which is associated with genetic instability, defines the subgroup of worst prognosis in MDS. However, the independent effect of monosomal karyotype remains controversial. Recent discoveries on mutations in RNA-splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1, U2AF2); DNA methylation (TET2, DNMT3A, IDH1/2); chromatin modification (ASXL1, EZH2); transcription factor (TP53, RUNX1); signal transduction/kinases (FLT3, JAK2); RAS pathway (KRAS, NRAS, CBL, NF1, PTPN11); cohesin complex (STAG2, CTCF, SMC1A, RAD21); DNA repair (ATM, BRCC3, DLRE1C, FANCL); and other pathway genes have given insights into the independent effects and interaction of co-occurrence of mutations on disease-phenotype. RNA-splicing and DNA methylation mutations appeared to occur early and are reported as ‘founder’ mutations in over 50% MDS patients. TET2 mutation, through altered DNA me...
Source: Mutation Research Reviews in Mutation Research - Category: Genetics & Stem Cells Source Type: research