Surface PEGylation of intraocular lens for PCO prevention: An in vivo evaluation

Posterior capsular opacification (PCO) is a common complication in cataract surgery. The development of PCO is attributed to the combination of adhesion, migration, proliferation, and transdifferentiation of the residual lens epithelial cells (LEC) onto the interface of intraocular lens (IOL) material and lens posterior, in which the initial adhesion is the beginning step and plays important roles. In the present study, hydrophilic polyethylene glycol (PEG) was immobilized onto IOL surface via plasma-aided chemical grafting procedure. The attenuated total reflection – Fourier transform infrared (ATR-FTIR) and contact angle (CA) – measurements indicate the successful surface PEGylation, as well as the excellent hydrophilicity of the surfaces. Compared with pristine IOL, the PEGylation does not influent its optical property, whereas the initial adhesion of LEC is greatly inhibited. In vivo ocular implantation results show that the PEGylated IOL presents good in vivo biocompatibility, and can effectively prevent the PCO development.
Source: Journal of Biomaterials Applications - Category: Materials Science Authors: Tags: Functional Biomaterials Surfaces Source Type: research