Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design

Monocytes and macrophages play a critical role in tissue development, homeostasis, and injury repair. These innate immune cells participate in guiding vascular remodeling, stimulation of local stem and progenitor cells, and structural repair of tissues such as muscle and bone. Therefore, there is a great interest in harnessing this powerful endogenous cell source for therapeutic regeneration through immunoregenerative biomaterial engineering. These materials seek to harness specific subpopulations of monocytes/macrophages to promote repair by influencing their recruitment, positioning, differentiation, and function within a damaged tissue. Monocyte and macrophage phenotypes span a continuum of inflammatory (M1) to anti-inflammatory or pro-regenerative cells (M2), and their heterogeneous functions are highly dependent on microenvironmental cues within the injury niche. Increasing evidence suggests that division of labor among subpopulations of monocytes and macrophages could allow for harnessing regenerative functions over inflammatory functions of myeloid cells; however, the complex balance between necessary functions of inflammatory versus regenerative myeloid cells remains to be fully elucidated. Historically, biomaterial-based therapies for promoting tissue regeneration were designed to minimize the host inflammatory response; although, recent appreciation for the roles that innate immune cells play in tissue repair and material integration has shifted this paradigm. A num...
Source: Experimental Biology and Medicine - Category: Research Authors: Tags: Minireview Source Type: research