miR-1273g-3p participates in acute glucose fluctuation-induced autophagy, dysfunction, and proliferation attenuation in human umbilical vein endothelial cells

In this study, the functions of human umbilical vein endothelial cells (HUVECs) were compared after treatment with sustained high glucose (SHG), AGF in two groups (AGF1 fluctuations between 5 and 16 mM and AGF2 fluctuations between 5 and 25 mM), and normal glucose levels as a control group (CTR). The medium of the groups was changed every 4 h. The influence of AGF on wound healing was also tested on C57BL/6 mice. The results show that cell proliferation, angiogenesis, and migration functions were injured in the SHG and both AGF groups. AGF2 group shows the worse condition in vitro. In vivo, the wound healing was delayed after the AGF treatment. Furthermore, the markers of apoptosis and autophagy were analyzed. We observed that the autophagy changed in all treatment groups, but apoptosis showed no change. To get to know the mechanism of dysfunction and autophagy, we performed the microRNA chip assay and real-time PCR and found miR-1273g-3p remarkably changed in AGF2 group. After the mimic and inhibitor of miR-1273g-3p were transfected during the AGF2 treatment, we found that the dysfunction and autophagy were partially enhanced by miR-1273g-3p mimic and reversed by miR-1273g-3p inhibitor in AGF2 group. Thus, we conclude that AGF can induce more dysfunction and autophagy, and miR-1273g-3p is also an important factor that leads to the injury.
Source: AJP: Endocrinology and Metabolism - Category: Endocrinology Authors: Tags: Call for Papers Source Type: research
More News: Endocrinology | Study