Comet assay with gill cells of Mytilus galloprovincialis end point tools for biomonitoring of water antibiotic contamination: Biological treatment is a reliable process for detoxification

This article investigates the ability of Pseudomonas peli to treat industrial pharmaceuticals wastewater (PW). Liquid chromatography–mass spectrometry (MS)/MS analysis revealed the presence, in this PW, of a variety of antibiotics such as sulfathiazole, sulfamoxole, norfloxacine, cloxacilline, doxycycline, and cefquinome. P. peli was very effective to be grown in PW and inducts a remarkable increase in chemical oxygen demand and biochemical oxygen demand (140.31 and 148.51%, respectively). On the other hand, genotoxicity of the studied effluent, before and after 24 h of shaking incubation with P. peli, was evaluated in vivo in the Mediterranean wild mussels Mytilus galloprovincialis using comet assay for quantification of DNA fragmentation. Results show that PW exhibited a statistically significant (p < 0.001) genotoxic effect in a dose-dependent manner; indeed, the percentage of genotoxicity was 122.6 and 49.5% after exposure to 0.66 ml/kg body weight (b.w.); 0.33 ml/kg b.w. of PW, respectively. However, genotoxicity decreased strongly when tested with the PW obtained after incubation with P. peli. We can conclude that using comet assay genotoxicity end points are useful tools to biomonitor the physicochemical and biological quality of water. Also, it could be concluded that P. peli can treat and detoxify the studied PW.
Source: Toxicology and Industrial Health - Category: Toxicology Authors: Tags: Articles Source Type: research