Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats

Human exposure to monocrotophos, an organophosphate pesticide, could occur due to its high use in agriculture to protect crops. Recently, we found that postlactational exposure to monocrotophos impaired cholinergic mechanisms in young rats and such changes persisted even after withdrawal of monocrotophos exposure. In continuation to this, the effect of monocrotophos on noncholinergic targets and role of oxidative stress in its neurotoxicity has been studied. Exposure of rats from postnatal day (PD)22 to PD49 to monocrotophos (0.50 or 1.0 mg kg–1 body weight, perorally) significantly impaired motor activity and motor coordination on PD50 as compared to controls. A significant decrease in the binding of 3H-spiperone to striatal membrane (26%, p < 0.01; 30%, p < 0.05) in rats exposed to monocrotophos at both the doses and increase in the binding of 3H-ketanserin to frontocortical membrane (14%, p > 0.05; 37%, p < 0.05) in those exposed at a higher dose, respectively, was observed on PD50 compared with the controls. Alterations in the binding persisted even after withdrawal of monocrotophos exposure on PD65. Increased oxidative stress in brain regions following exposure of rats to monocrotophos was also observed on PD50 that persisted 15 days after withdrawal of exposure on PD65. The results suggest that monocrotophos exerts its neurobehavioral toxicity by affecting noncholinergic functions involving dopamin...
Source: Toxicology and Industrial Health - Category: Toxicology Authors: Tags: Articles Source Type: research
More News: Brain | Health | Neurology | Toxicology