Towards use of MRI-guided ultrasound for treating cerebral vasospasm

Abstract Cerebral vasospasm is a major cause of morbidity and mortality in patients with subarachnoid hemorrhage (SAH), causing delayed neurological deficits in as many as one third of cases. Existing therapy targets induction of cerebral vasodilation through use of various drugs and mechanical means, with a range of observed efficacy. Here, we perform a literature review supporting our hypothesis that transcranially delivered ultrasound may have the ability to induce therapeutic cerebral vasodilation and, thus, may one day be used therapeutically in the context of SAH. Prior studies demonstrate that ultrasound can induce vasodilation in both normal and vasoconstricted blood vessels in peripheral tissues, leading to reduced ischemia and cell damage. Among the proposed mechanisms is alteration of several nitric oxide (NO) pathways, where NO is a known vasodilator. While in vivo studies do not point to a specific physical mechanism, results of in vitro studies favor cavitation induction by ultrasound, where the associated shear stresses likely induce NO production. Two papers discussed the effects of ultrasound on the cerebral vasculature. One study applied clinical transcranial Doppler ultrasound to a rodent complete middle cerebral artery occlusion model and found reduced infarct size. A second involved the application of pulsed ultrasound in vitro to murine brain endothelial cells and showed production of a variety of vasodilatory chemicals, including by-...
Source: Journal of Therapeutic Ultrasound - Category: Radiology Source Type: research