A Disintegrin and Metalloproteinase Domain 17 Regulates Colorectal Cancer Stem Cells and Chemosensitivity Via Notch1 Signaling

The objective of the present study was to determine whether ADAM17 regulates the CSC phenotype in CRC and to elucidate the downstream signaling mechanism that mediates cancer stemness. We treated established CRC cell lines and a newly established human CRC cell line HCP-1 with ADAM17-specific small interfering RNA (siRNA) or the synthetic peptide inhibitor TAPI-2. The effects of ADAM17 inhibition on the CSC phenotype and chemosensitivity to 5-fluorouracil (5-FU) in CRC cells were examined. siRNA knockdown and TAPI-2 decreased the protein levels of cleaved Notch1 (Notch1 intracellular domain) and HES-1 in CRC cells. A decrease in the CSC phenotype was determined by sphere formation and ALDEFLUOR assays. Moreover, TAPI-2 sensitized CRC cells to 5-FU by decreasing cell viability and the median lethal dose of 5-FU and increasing apoptosis. We also showed the cleavage and release of soluble Jagged-1 and -2 by ADAM17 in CRC cells. Our studies have elucidated a role of ADAM17 in regulating the CSC phenotype and chemoresistance in CRC cells. The use of drugs that inhibit ADAM17 activity might increase the therapeutic benefit to patients with mCRC and, potentially, those with other solid malignancies. Significance The present study has demonstrated the role of A disintegrin and metalloproteinase domain 17 (ADAM17) in regulating cancer stemness and chemosensitivity in colorectal cancer (CRC) cells. In addition, a previously unknown cleavage of the Notch ligands Jagged-1 and -2 by ADAM...
Source: Stem Cells Translational Medicine - Category: Stem Cells Authors: Tags: Cancer Stem Cells, Colon Stem Cells Source Type: research