A Novel in vitro Bioassay to Explore the Repellent Effects of Compounds Against Mosquito Aedes aegypti (Diptera: Culicidae)

Mosquitoes are vectors for many pathogens resulting in many deaths of humans. Repellents play an important role in reducing mosquito bites and the spread of mosquito-borne diseases. Currently, Klun & Debboun (K & D) and human-arm-based bioassay systems are used to identify repellent properties of compounds, extracts, and essential oils. Risks involved with human-arm-based systems are allergic reactions and limited replicates. We are reporting an in vitro bioassay method "NCNPR repellent bioassay (NCNPR-RB)" that can closely simulate the results of the cloth patch bioassay system used to determine repellency against mosquitoes. The NCNPR-RB method uses heat to attract mosquito and edible collagen sheets as an alternate to human skin. Multiple plant compounds with documented repellency were tested. DEET (N,N-diethyl-3-methylbenzamide) was used as a positive control. Treatments were prepared in EtOH and applied in dosages ranging from 0.011–1.5 mg/cm2 to a 20-cm2 collagen sheet. The number of mosquitoes commencing to bite per probe was recorded visually for 1 min. The minimum effective dosage (mg/cm2) of compounds: DEET (0.021), carvacrol (0.011), thymol (0.013), undecanoic acid (0.023), thymol methyl ether (0.269), and 2-nonanone (>0.375 mg/cm2) determined in NCNPR-RB were similar to those reported in literature using a cloth patch bioassay system. The NCNPR-RB can be used to screen compounds with reasonable reproducibility of the data at a faster rate tha...
Source: Journal of Medical Entomology - Category: Biology Authors: Tags: Vector Control, Pest Management, Resistance, Repellents Source Type: research