Conditioning of Roots with Hypoxia Increases Aluminum and Acid Stress Tolerance by Mitigating Activation of K+ Efflux Channels by ROS in Barley: Insights into Cross-Tolerance Mechanisms

Aluminum (Al) is prevalent in soils, but Al toxicity is manifested only under acid conditions. It causes severe damages to the root system. Short-term waterlogging stress can occur simultaneously with Al toxicity in areas with high rainfall or an inappropriate irrigation pattern. Barley (Hordeum vulgare L.) is one of the most Al-sensitive small-grained cereals. In this work, we have investigated effects of short-term treatments with hypoxia and phenolic acid (two major constraints in waterlogged soils) on root sensitivity to low-pH and Al stresses. We showed that hypoxia-primed roots maintained higher cell viability when exposed to low-pH/Al stress, in both elongation and mature root zones, and possessed superior ability to retain K+ in response to low-pH/Al stresses. These priming effects were not related to higher H+-ATPase activity and better membrane potential maintenance, and could not be explained by the increased expression levels of HvHAK1, which mediates high-affinity K+ uptake in roots. Instead, hypoxia-conditioned roots were significantly less sensitive to H2O2 treatment, indicated by the 10-fold reduction in the magnitude of K+ efflux changes. This suggested that roots pre-treated with hypoxia desensitized reactive oxygen species (ROS)-inducible K+ efflux channels in root epidermis, most probably via enhanced antioxidative capacity. A possible role for Ca2+ in stress-induced ROS signaling pathways is also discussed. Overall, our results report, for the first time,...
Source: Plant and Cell Physiology - Category: Cytology Authors: Tags: Regular Papers Source Type: research