Polypharmacology of Small-Molecule Modulators of the 5-Lipoxygenase Activating Protein (FLAP) Observed via a High-throughput Lipidomics Platform

Leukotrienes (LTs) and related species are proinflammatory lipid mediators derived from arachidonic acid (AA) that have pathological roles in autoimmune and inflammatory conditions, cardiovascular diseases, and cancer. 5-Lipoxygenase activating protein (FLAP) plays a critical accessory role in the conversion of AA to LTA4, and its subsequent conversion to LTC4 by LTC4 synthase. Pharmacological inhibition of FLAP results in a loss of LT production by preventing the biosynthesis of both LTB4 and LTC4, making it an attractive target for the treatment of inflammatory diseases in which LTs likely play a role. Small-molecule (SM) drugs often exhibit polypharmacology through various pathways, which may explain the differential therapeutic efficacies of compounds sharing structural similarity. We have profiled a series of SM FLAP modulators for their selectivity across enzymes of AA cascade in human whole blood (HWB), using a recently developed LC/MS (liquid chromatography–mass spectrometry)-based high-throughput lipidomics platform that monitors 122 eicosanoids in multiplex. Highly efficient data acquisition coupled with fast and accurate data analysis allowed facile compound profiling from ex vivo study samples. This platform allowed us to quantitatively map the effects of those SMs on the entire AA cascade, demonstrating its potential to discriminate structurally related compounds.
Source: Journal of Biomolecular Screening - Category: Molecular Biology Authors: Tags: Original Research Source Type: research