Rapid Determination of HIV-1 Mutant Frequencies and Mutation Spectra Using an mCherry/EGFP Dual-Reporter Viral Vector

The high mutation rate of human immunodeficiency virus type-1 (HIV-1) has been a pivotal factor in its evolutionary success as a human pathogen, driving the emergence of drug resistance, immune system escape, and invasion of distinct anatomical compartments. Extensive research has focused on understanding how various cellular and viral factors alter the rates and types of mutations produced during viral replication. Here, we describe a single-cycle dual-reporter vector assay that relies upon the detection of mutations that eliminate either expression of mCherry or enhanced green fluorescent protein (EGFP). The reporter-based method can be used to efficiently quantify changes in mutant frequencies and mutation spectra that arise due to a variety of factors, including viral mutagens, drug resistance mutations, cellular physiology, and APOBEC3 proteins.
Source: Springer protocols feed by Immunology - Category: Allergy & Immunology Source Type: news