In silico interaction of methyl isocyanate with immune protein responsible for Mycobacterium tuberculosis infection using molecular docking

This article reports in silico analysis of methyl isocyanate (MIC) on different key immune proteins against Mycobacterium tuberculosis. The analysis shows that MIC is released in the Bhopal gas tragedy in 1984, which is highly toxic and extremely hazardous to human health. In this study, we have selected immune proteins to perform molecular docking with the help of Autodock 4.0. Results show that the CD40 ligand and alpha5beta1 integrin have higher inhibition compared to plasminogen activator urokinase, human glutathione synthetase, mitogen-activated protein kinase (P38 MAPK 14), surfactant protein-B, -D (SP-D), and pulmonary SP-D. MIC interacted with His-125, Try-146 residue of CD40 ligand and Ala-149, and Arg-152 residue of alpha5beta1 integrin and affects the proteins functioning by binding on their active sites. These inhibitory conformations were energetically and statistically favored and supported the evidence from wet laboratory experiments reported in the literature. We can conclude that MIC directly or indirectly affects these proteins, which shows that survivals of the disaster suffer from the diseases like tuberculosis infection and lung cancer.
Source: Toxicology and Industrial Health - Category: Toxicology Authors: Tags: Articles Source Type: research