Treatment study of distal femur for parathyroid hormone (1-34) and {beta}-tricalcium phosphate on bone formation in critical size defects in rats

The objective of this study was to evaluate local bone formation following systemic administration of parathyroid hormone (1–34), a surgically implanted synthetic β-tricalcium phosphate bone biomaterial serving as a matrix to support new bone formation. Twelve weeks after bilateral ovariectomy, all rats underwent bone defect in the distal femurs, and β-tricalcium phosphate was implanted into critical sized defects. After defect operation, all animals were randomly divided into four groups and received following subcutaneous injections until death at four and eight weeks: sham rats (group ST); sham rats + parathyroid hormone, 30 µg/kg, three times a week (group SPT); OVX rats (group OT); and OVX rats + parathyroid hormone (group OPT). The distal femurs of rats were harvested for evaluation. The treatment group demonstrating the highest levels of new bone formation was the defects treated with parathyroid hormone as assessed by micro-computed tomography, biomechanical strength, and histological analysis for sham rats. Furthermore, parathyroid hormone showed a stronger effect on accelerating the degradation of β-tricalcium phosphate. Osteoporosis can limit the function of parathyroid hormone and/or β-tricalcium phosphate. The results from our study demonstrate that combination of parathyroid hormone and β-tricalcium phosphate brings better effect to bone tissue repair in non-osteoporosis and/or osteoporosis status.
Source: Journal of Biomaterials Applications - Category: Materials Science Authors: Tags: Hard Tissues and Materials Source Type: research