Molecular mechanisms of peritoneal dialysis-induced microvascular vasodilation.

Molecular mechanisms of peritoneal dialysis-induced microvascular vasodilation. Adv Perit Dial. 2014;30:98-109 Authors: Zakaria el R, Althani A, Fawzi AA, Fituri OM Abstract Peritoneal dialysis (PD) solutions dilate microvessels by undefined mechanisms. This vasodilation directly affects ultrafiltration and solute exchange during a PD dwell and is thought to account for the variable mass transfer area coefficient for small solutes during a glucose-based hypertonic dwell. We hypothesized that PD-mediated vasodilation occurs by endothelium-dependent mechanisms that involve endothelium energy-dependent K+ channels (K(ATP)), adenosine A1 receptor activation, and NO release. We used intravital videomicroscopy to study 3 levels of microvessels (A1 inflow arterioles about 100 microm diameter to pre-capillary A3 arterioles 10 - 15 microm diameter) in the terminal ileum of anesthetized rats under control conditions in vivo in a tissue bath. Ileum was bathed with hypertonic mannitol or 2.5% glucose-based PD solution (Delflex: Fresenius Medical Care North America, Waltham, MA, U.S.A.) with or without topical application of individual or combined specific inhibitors of the endothelium-dependent dilation pathways.: NO (L-NMMA), prostaglandin I2 (mefenamic acid), endothelium hyperpolarizing factor (glibenclamide), and adenosine A1 receptor antagonist (DPCPX). The mannitol and PD solutions induced rapid and sustained peritoneal vasodilation whose m...
Source: Advances in Peritoneal Dialysis. Conference on Peritoneal Dialysis - Category: Urology & Nephrology Tags: Adv Perit Dial Source Type: research