Metastable cubic zinc-blende III/V semiconductors: Growth and structural characteristics

Publication date: Available online 14 November 2015 Source:Progress in Crystal Growth and Characterization of Materials Author(s): Andreas Beyer, Wolfgang Stolz, Kerstin Volz III/V semiconductors with cubic zinc-blende crystal structure, for example GaAs, GaP or InP, become metastable if atoms with significantly smaller or larger covalent radius than the matrix atoms are alloyed. Examples are the incorporation of Boron, Nitrogen and Bismuth in the above-mentioned materials. The resulting multinary compound semiconductors, like for example (Ga,In)(N,As), Ga(N,As,P) and Ga(As,Bi), are extremely interesting for several novel applications. The growth conditions, however, have to be adopted to the metastability of the material systems. In addition, structure formation can occur which is different from stable materials. This paper summarizes our current knowledge on growth characteristics of several metastable materials. Mainly examples for Metal Organic Vapor Phase Epitaxy (MOVPE) are given. The MOVPE growth characteristics are compared to selected examples using Molecular Beam Epitaxy growth to highlight that the observed growth characteristics are intrinsic for the studied metastable material systems. Furthermore, structural peculiarities of dilute borides, nitrides and bismides occurring during growth as well as in growth interruptions are summarized and correlated to the growth conditions.
Source: Progress in Crystal Growth and Characterization of Materials - Category: Chemistry Source Type: research
More News: Chemistry | Men