Periodically Grown Quantum Nanostructures with Arbitrary Geometries: Periodicity Effects on the Induced Electro-elastic Fields

In this study, by utilization of the electro-mechanical eigenfield concept in conjunction with the Fourier series technique, an analytical solution is presented which gives the electro-elastic fields induced by one-, two-, and three-dimensional periodic distribution of QWs, QWRs, and QDs, respectively. This methodology takes into account the electro-mechanical couplings of elastic and electric fields within the piezoelectric barrier as well as the interaction between periodically grown QWRs and QDs. The latter would be so important since the density of the periodically grown QNSs will have significant effects on the induced electro-elastic fields within both the QNSs and the surrounding barrier; this issue is addressed precisely in the present study by measuring the induced electro-elastic fields due to different periodicities of pyramidal QDs. Furthermore, the current formulation is capable of treating arbitrary geometries of QWRs and QDs which makes the solution more interesting and powerful.
Source: Procedia Materials Science - Category: Materials Science Source Type: research