Gene-specific DNA methylation of DNMT3B and MTHFR and colorectal adenoma risk

Publication date: December 2015 Source:Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Volume 782 Author(s): Vikki Ho, Janet E. Ashbury, Sherryl Taylor, Stephen Vanner, Will D. King DNA methyltransferase 3B (DNMT3B) and methylenetetrahydrofolate reductase (MTHFR) are genes which encode enzymes critical to one-carbon metabolism. Polymorphisms in these genes have been implicated in colorectal cancer etiology; however, epigenetic modifications such as gene-specific DNA methylation also affect gene expression. DNA methylation of DNMT3B and MTHFR was quantified in blood leukocytes using Sequenom EpiTYPER® among 272 participants undergoing a screening colonoscopy. DNA methylation was quantified in 66 and 28CpG sites of DNMT3B and MTHFR respectively, and conceptualized using two approaches. First, measures representing average methylation across all CpG sites were created. Second, unsupervised principal component (PC) analysis was used to identify summary variables representing methylation around the transcription start site and in the gene-coding area for both DNMT3B and MTHFR. Logistic regression was used to compare methylation levels between participants diagnosed with colorectal adenoma(s) versus those with a normal colonoscopy via the estimation of odds ratios (ORs) and 95% confidence intervals (95% CIs) for the risk of colorectal adenomas. No association was observed between average DNA methylation of either DNMT3B or MTHFR and colorectal ...
Source: Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis - Category: Cytology Source Type: research