Fluorescent Molecular Tomography for In Vivo Imaging of Mouse Atherosclerosis

Optical imaging technologies such as fluorescence molecular tomography (FMT) are gaining great relevance in cardiovascular research. The main reason is the increased number of available fluorescent agents, especially those termed “activatable probes,” which remain quenched under baseline conditions and are fluorescent when a specific enzymatic activity is present. A major characteristic of FMT is the possibility of obtaining quantitative data of fluorescence signal distribution in a noninvasive fashion and using nonionizing radiation, making FMT an invaluable tool for longitudinal studies with biomedical applications. Here, we describe a standard procedure to perform FMT experiments in atherosclerosis mouse models, from the handling of the animals to the reconstruction of the 3D images.
Source: Springer protocols feed by Molecular Medicine - Category: Molecular Biology Source Type: news