Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior

Optogenetics was introduced as a new technology in the neurosciences about a decade ago (Zemelman et al., Neuron 33:15–22, 2002; Boyden et al., Nat Neurosci 8:1263–1268, 2005; Nagel et al., Curr Biol 15:2279–2284, 2005; Zemelman et al., Proc Natl Acad Sci USA 100:1352–1357, 2003). It combines optics, genetics, and bioengineering to render neurons sensitive to light, in order to achieve a precise, exogenous, and noninvasive control of membrane potential, intracellular signaling, network activity, or behavior (Rein and Deussing, Mol Genet Genomics 287:95–109, 2012; Yizhar et al., Neuron 71:9–34, 2011). As C. elegans is transparent, genetically amenable, has a small nervous system mapped with synapse resolution, and exhibits a rich behavioral repertoire, it is especially open to optogenetic methods (White et al., Philos Trans R Soc Lond B Biol Sci 314:1–340, 1986; De Bono et al., Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans, In: Hegemann P, Sigrist SJ (eds) Optogenetics, De Gruyter, Berlin, 2013; Husson et al., Biol Cell 105:235–250, 2013; Xu and Kim, Nat Rev Genet 12:793–801, 2011). Optogenetics, by now an “exploding” field, comprises a repertoire of different tools ranging from transgenically expressed photo-sensor proteins (Boyden et al., Nat Neurosci 8:1263–1268, 2005; Nagel et al., Curr Biol 15:2279–2284,...
Source: Springer protocols feed by Genetics/Genomics - Category: Genetics & Stem Cells Source Type: news