Cholesterol mobilization from hepatic lipid droplets during endotoxemia is altered in obese ob/ob mice

The innate immune response to pathogens during the acute phase response includes lipid metabolism adaptations. Hepatic triacylglycerol (TG) and cholesteryl ester (CE) storage in and mobilization from lipid droplets (LDs) respond to metabolic changes under the control of liver X receptor (LXR) transactivation and cytokine transduction. To evaluate whether alterations of these mechanisms have an impact in the adaptive response to endotoxemia, we analysed liver metabolism changes in lipopolysaccharide (LPS)-treated ob/ob mice, which show altered metabolic and innate responses and a higher sensitivity to sepsis. Lipid composition of serum lipoproteins and hepatic LDs was determined in wild type and ob/ob mice 24 h after LPS treatment. Liver metabolic profiling was done by measuring enzyme activities and mRNA levels. Increased CE hydrolase activity in LDs from endotoxemic mice was accompanied by a lower content of CE and low or no induction of LXR-mediated expression of genes involved in HDL secretion. The attenuated response in liver lipid mobilization accompanied by the strain-specific cholesterol enrichment of secreted VLDL might lead to accumulation of LDL cholesterol. According to our findings, obese leptin-deficient mice present an altered control of hepatic lipid metabolism responses to LPS, which might be, in part at least, a consequence of impaired LXR.
Source: Journal of Biochemistry - Category: Biochemistry Authors: Tags: Regular Papers Source Type: research