An ex vivo model using human osteoarthritic cartilage demonstrates the release of bioactive insulin‐like growth factor‐1 from a collagen–glycosaminoglycan scaffold

This study describes a simple, non‐compressive method that is applicable to mammalian or human cartilage and provides a reasonable throughput of samples. Rings of full‐depth articular cartilage slices were derived from human donors undergoing knee replacement for osteoarthritis and a 3 mm core of a collagen/glycosaminoglycan biomimetic scaffold (Tigenix, UK) inserted to create the EVM. Adult osteoarthritis chondrocytes were seeded into the scaffold and cultures maintained for up to 30 days. Ex vivo models were stable throughout experiments, and cells remained viable. Chondrocytes seeded into the EVM attached throughout the scaffold and in contact with the cartilage explants. Cell migration and deposition of extracellular matrix proteins in the scaffold was enhanced by growth factors particularly if the scaffold was preloaded with growth factors. This study demonstrates that the EVM represents a suitable model that has potential for testing a range of therapeutic parameters such as numbers/types of cell, growth factors or therapeutic drugs before progressing to costly pre‐clinical trials. © 2015 The Authors. Cell Biochemistry and Function Published by John Wiley & Sons Ltd.
Source: Cell Biochemistry and Function - Category: Biochemistry Authors: Tags: Research Article Source Type: research